

使用维护说明手册

WTYF250 系列 无齿曳引机

宁波欣达电梯配件厂 版本: Ae16 2021.12

目录

1	使用要	更则			2
	1.1	使用符	守号说明]	2
	1.2	基本	安全要	求	2
2	产品根	既述			3
	2.1	产品约	吉构		3
	2.2	产品包	命名方法	<u>-</u>	4
	2.3	产品=	主要技术	- 	

1 使用要则

十分感谢您选用我公司的产品。为保证电梯能安全、可靠、高质量地运行,电梯工作人员必须经过专门培训,熟悉本产品的安装、调试和使用,并对电梯的构造有充分的了解。安装、调试、验收、使用、保养和维修不仅应遵照本说明书的规定,而且也应遵守 GB7588-2003 《电梯制造与安装安全规范》。凡在安装、调试、验收、使用、保养和维修中,任何因处理不当或违反上述规定引起的任何人身或设备事故,制造厂将不承担任何责任。为保证电动机的正确安装与使用,请先仔细阅读本使用维护手册。

1.1 使用符号说明

本手册按提示作用采用了以下四种符号:

必须有足够的警戒措施,否则有可能造成重大人身伤害(甚至危及生命)或设备严重损坏。

必须有足够的预防措施,否则有可能造成人身伤害(不至于死亡)或损备损坏。但当外部条件发生变化而预防措施没有作相应变更时,也可能会造成严重人身伤害(甚至危及生命)或设备严重损坏。

必须在检查、操作上引起相当的注意,否则可能引起人身伤害或设备损坏。

相关知识的提示。

1.2 基本安全要求

无齿曳引机必须安装在一个可闭锁的空间内,只有经充分训练的专门人员才可接近它。

- ▶ 产品符合标准 GB7588-2003 及第 1 号修改单、GB/T24478-2009、EN81-20: 2014、EN81-50: 2014
- 操作人员必须严格按本手册和 GB7588-2003 (egvEN81-1: 1998) 规定,否则将造成危险和破坏。
- 安装后应检查电动机和制动闸的功能是否符合要求。
- 电动机不得直接与三相电源相连接,供电必须通过具有驱动永磁同步电动机功能的变频器。
- 电动机和制动器的电磁线圈是发热部件,不允许在外表覆盖任何会影响其散热的其它物件。
- 手动松闸和盘车装置只能用于紧急状态,在正常运行时严禁使用,除非在本手册上有特别说明。
- 电动机转动时,即使变频器已断电,它也有高压产生,禁止触摸电动机的接线端子。
- 在电动机高速运转时,禁止采用接线端子直接短路的方式来达到制动目的,但允许在紧急状态时在零速起始条件下短接接线端子,使轿厢能缓慢升降,实现紧急救援。

2 产品概述

2.1 产品结构

WTYF250 系列永磁同步无齿曳引机(以下简称曳引机),采用低速、大力矩的三相永磁同步电动机直接驱动方式,因此具有低能耗、低噪音、无污染、少维护等优越性,其主要结构特点为:

- ┃ 曳引轮与制动轮同轴。曳引轮与轴采用键联接,制动轮与轴采用锥度配合加键联接。
- 转子采用双支承结构, 选用双列自调心滚子轴承。
- 选用的永磁体通过高强度粘接剂和蒸尾槽固定于转子外圆面上,保证在运行过程中即使大于2倍额定转矩时也不致于去磁和脱落
- ▋■制动系统由两套独立工作的制动臂、闸瓦、电磁铁和松闸微动开关组成。
- ▋ 编码器有二种安装方式。
- 为防止盘车手轮插入后误起动,装有盘车微动开关,用来断开安全回路,以确保在操作时不 致误起动。

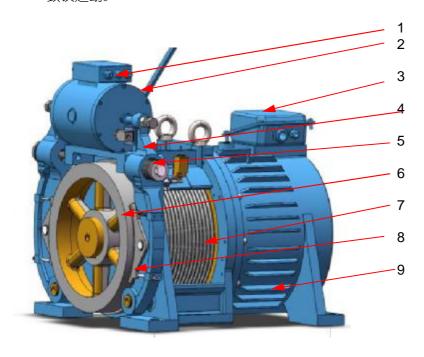
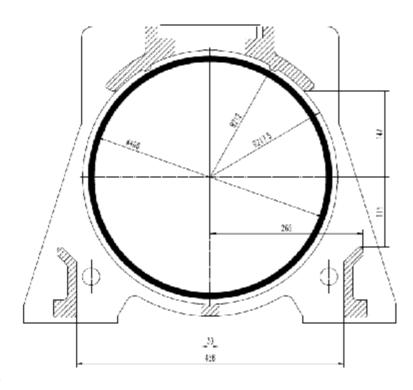
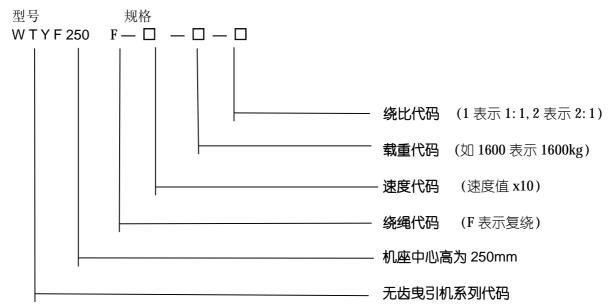



图 1 主机结构示意图


序号	名称	序号	名称
1	电磁铁接线盒	6	制动轮
2	电磁铁	7	曳引轮
3	主机接线盒	8	闸瓦
4	制动臂	9	机座
5	抱闸弹簧		

- ▶ 本系列永磁同步无齿曳引机采用复绕型式,绕比有 2:1 和 1:1 两种。
- 编码器的两种安装方式,一种适用于具有小锥轴的编码器 (例如德国 Heidenhain 公司的 1300 系列),将编码器插入曳引机主轴锥孔中,用螺栓与主轴固定,外壳通过内胀方式与编码器座固定。第二种适用于具有大轴孔的编码器,将其套入曳引机主轴上,通过键连接,外壳由簧片经螺钉固定于机座上。
- 本公司标准配置的编码器为德国 Heidenhain 公司的 ERN1387 型号 (客户可自行定制)。
- 本系列永磁同步无齿曳引机对绕绳的范围有一定限制,定货时请予以充分考虑,具体见图示,图中阴影部分为主机前支撑上的筋,它贯穿于整个曳引轮轴向出绳部位,影响钢丝绳的倾斜角度,请整体设计时予以考虑,以免钢丝绳与其发生碰撞。

2.2 产品命名方法

2.3 产品主要技术参数

2.3.1 产品主机的曳引技术参数

- 工作制: S5, 持续率 40%, 动作次数 240/h
- 曳引轮直径: Φ406
- 曳引绳在曳引轮的包角:复绕>310°
- 曳引绳直径 12.7mm、槽距 12.7mm、数量见附 1
- 允许最大轴负荷: 10000 kg
- 最大推荐提升高度: 120m (或根据轴负荷计算)
- 平衡系数: 0.5
 - 注: 当用户使用条件不符合以上要求时, 应在合同签订前与制造厂协商

2.3.2 产品主机的驱动电机技术参数

● 类型:永磁同步电机

◆ 极数: 24 极
 ◆ 绝缘等级: F级
 ◆ 防护等级: IP21
 ◆ 冷却方式为 IC00
 ◆ 最大转矩倍数: 2.2 倍

电机绕组热检测器: PTC120℃

● 采用变频器的电压、频率: 3 相, 400V 级, 50~60Hz

2.3.3 产品的制动器的技术参数

● 制动力矩:参见本文 6.2.3 中的表 5。

● 强励电压: DC 200±10V● 保持电压: DC 100±10V

● 强励电流: 1350-1600kg 2.3A; 2000kg 3.0A;2500kg 3.2A

■ 工作气隙: 0.05~0.10mm (出厂或重新调整后)

● 最大工作气隙: 0.25mm

● 工作持续率:50%

● 制动器工作状态检查开关

a、最大工作电压: AC 250V (不能直接至直流回路)

b、最大通断电流: 2A

2.4 产品使用环境

- 海拔高度不超过 1000m。
- 环境温度-5℃~40℃。
- 在 20℃时的最大湿度相对值不超过 90%,并不存在凝露状态。
- 要注意有良好的通风,保证有足够的热量可通过对流和幅射被散发。

2.5 产品装箱内容

- 曳引机 1 台。
- 随机附件:编码器连接电缆1根、盘车手轮1件、松闸杆1件。
- 曳引机和编码器使用说明书各 1 份。

- 用户特殊需求,应在签订合同时以合同附件的形式标明。
- 为不提高制造成本和影响交货周期,用户应尽量在标准供货范围内选择。

3 产品的贮存和搬运

3.1 产品的贮存

- 曳引机应存放在封闭的场所,该场所应保持干燥、无尘、通风良好和无明显振动的场所。
- 若存储超过三个月,每隔三个月应使曳引机在低于 20r/min 转速下正、反方向各运转 10 分钟以上,使润滑脂能在轴承内均匀分布,以免轴承锈蚀。

3.2 产品的吊运

曳引机上安装有供吊装用的吊环螺钉. 如图

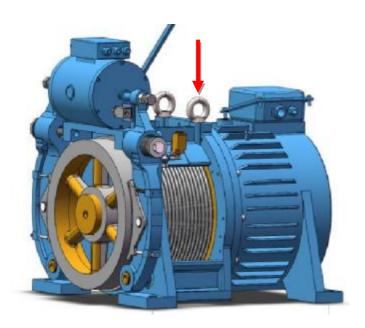


图 2 产品吊装示意图

● 吊环部位仅允许起吊曳引机及其附加的机架,不得另外再附加重量。

4 产品的安装

4.1 机械安装前的准备工作

- 产品开箱后应立即用肉眼检查其外部是否完整无损。如损坏是由运输部门造成的,应立即向运输部门索赔,即使急需,也不得进行装机运行。
- 安装前,应计算底座和基础的允许载荷是否得到满足。
- 底座和基础必须有足够的强度和刚性,以保证在曳引机允许使用的所有载荷范围内都能得到满足。
- 安装曳引机的平面其平面度不得超过 0.2mm。
- 曳引机安装在一个封闭的空间,并能观察到有关的安全防护措施。若要底坑安装,应对底坑采取特殊的防进水措施。一旦浸入水中,有可能引起破坏性损坏。
- 曳引机的底脚固定应采用强度为 10.9 级的 M24 螺栓和 M24 螺母,其扳手紧固力矩应符合相应要求。

4.2 电气联接前的准备工作

- 电气联接应在曳引机机械安装完毕后进行,必须由经考核后合格的电工来操作。
- 在进行任何联接操作前(特别是在打开接线盒前)应切断所有电路(包括附加的和辅助的)。
- 投入使用前应测定电动机和制动电磁铁的绝缘电阻。测试用 500V 级兆欧表,其冷态值 应大于 5MΩ。若低于此值应对其线圈进行加热干燥处理。加热可用工频电源进行,但 其所加的电压值,对电机应低于 5%额定电压值,对制动器应低于 30%强励电压值,并 随时观察发热情况,应控制外壳表面温度不超过 80℃。
- 对于永久性的电气连接要保证连接可靠,不得有任何松动。
- 在接线盒内不得有外来杂物、灰尘及潮湿空气进入。为此,接线前应进行严格检查,接线后应锁紧电缆夹头,接线后应注意保证电缆线通入接线盒后入线□的密封。

应注意严格按以下5个安全规则进行操作,以避免人身伤亡和机器损毁。

- 切断电源。
- 对任何能在不注意情况下,由于不经意的碰触能使机器动作的装置应予锁闭。
- 确认电源已被安全装置隔离。
- 对有可能产生高电压 (1000V 以上) 的回路采取可靠的接地和短接。
- 相邻的运动部件应采用安装装置或防护罩遮隔。

- 本产品所用电缆夹头具有防水功能,并符合 EMC 要求。
- 主机接线盒内的端子上的最大允许电压上升率为 1.3kV/µs, 电压的最高值为 1.3kV。若有可能超过上述数值时,应采用滤波器或外串电抗器。滤波器或外串电抗器将显著提高电机的绝缘寿命,但将降低电机的最大转矩 3~5%。
- 电机的绝缘规范按 700V 设计,这个电压也是 400V 级变频器瞬时可能达到的最高直流母线电压值。

4.3 电气联接

4.3.1 主机接线盒的接线

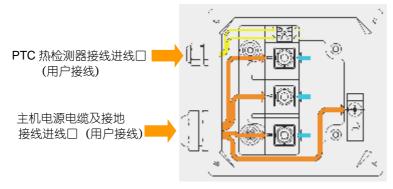


图 3 主机接线盒的接线示意图

- 为保证电机不致因过热造成磁块永久性去磁,导致电机损坏或性能恶化。必须将 PTC 热检测元件接入相应的控制回路中,一旦过热,应保证能在尽可能短的时间内切断电源。
- PTC 热检测元件的最高工作电压应不超过 25V。
- 承磁体的最高允许工作温度为 150℃,但在此温度下,将有磁性能的不可逆损失,影响
 电机运行性能。为提高其可靠性,PTC 热检测元件按 120℃设置。
- 为保证安全运行,电动机必须可靠接地。
- 为防止主电缆(变频器输出电缆)对周围空间的电磁幅射干扰信号传输电缆和(编码器与变频器连接电缆)受到电磁幅射干扰,主电缆应尽可能短,且应为带屏蔽的三芯电缆,屏蔽电缆的金属护套二端绞扭后同时接地,主电缆电流密度应不超过 5A/mm²,其线路压降不超过 0.2V。

- 电动机内三相绕组已接成"Y"形,引出三根线。
- 电动机的相邻三相绕组内埋置有 3 个互相串联的 PTC 热检测元件,它的动作温度为 120℃。当外施电压为 2.5V 时,在不同温度下的对应电阻值见表 1。

表 1 PTC 热检测器的检测温度与电阻对应表

3 个互相串联的 PTC 热检测元件的电阻值 (Ω)	≤ 300	≤ 1650	≥ 3990	≥ 12000
对应绕组内部温度 (℃)	25	115	125	≥135

4.3.2 制动器电磁铁接线盒的接线

- 制动器的电磁铁的电磁线圈接直流电。当要求制动器释放时,应先通强励磁电压 DC200±20V,时间约为 1~2s,尔后当制动器释放后,强励磁转换为保持,约为 DC100±10V,保持至断电规闸。
- 制动器连接用二芯电缆截面积不小于 0.75mm², 绝缘耐电压值不小于 500V。
- 制动器电磁线圈和 3 个微动开关的接线端子在制动器电磁铁外壳上的接线盒内,接线时应注意保持其内无灰尘、潮气和其它杂物 (见图 4)。
- 若在制动器的接线盒内已安装有可控整流电源,它的强励电压和保持电压的转换是自动完成的。用户使用时、只要将 AC220V 接入 PCB 板上标有 N、L 标志的接线端子上即

- 可, 断电开关应设置在交流侧 (见图 5)。
- 抱闸微动开关的接线端子出厂时接成常开状态,即在制动器处在制动状态(电磁线圈断电)时,二组开关触头处在开路状态,而在制动器电磁线圈处在通电状态(制动器释放)时,抱闸微动开关的二组触头同时处在闭合状态。
- 制动器电磁线圈在强励电压 DC200V 时电流见 2.3.3.
- 抱闸微动开关的开断能力为电压不超过 AC250V, 电流不超过 0.5A。
- 抱闸微动开关的动作位置可通过调节抱闸开关调整杆 (参见图 6) 来实现。

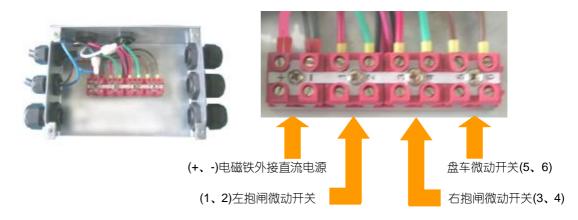


图 4 制动器接线盒的接线示意图

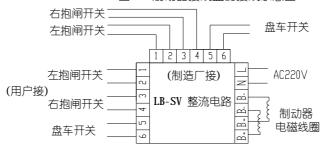


图 5 带整流电路制动器接线端子盒

4.3.3 编码器的接线

- 编码器与变频器连接或拆卸时,必须切断变频器供电电源,以免损坏变频器和编码器
- 曳引机为方便用户选用不同的变频器,可提供多种编码器以供选配。用户在订货时应根据所选用的变频器来确定配用的编码器,或者根据配用的编码器来选配变频器。当用户难以确定时,应向所配用的变频器厂商咨询。
- 编码器信号电缆标准长度为 6m, 也可根据用户要求定制,但最长不超过 10m。 为减少主电缆对信号传输电缆的电磁幅射干扰,信号传输电缆必须是屏蔽电缆,且屏蔽 电缆的金属护套二端绞扭后同时接地。

为避免编码器信号受到干扰,编码器信号线与电源电缆应分别布线。

5 产品主机的调试

- 曳引机的调试实际就是求取变频器与曳引机的最佳配合,因此调试时应对所选用的变频器有深入的了解和较丰富的调试、使用经验。
- 曳引机安装和电气联接完成后,应仔细检查曳引机的固定和电气联接是否可靠和正确
- 待检查无误悬挂轿厢和对重前,向变频器输入曳引机有关参数,并使电动机在空载状态由变频器供电。此时电动机和变频器应处在自学习状态,变频器读取电动机有关参数及电动机定、转子磁场的相对位置数值。
- 自学习完成后,应在空载状态通电验证自学习是否正确完成,待确认后方可悬挂轿厢和 对重。调试时自学习最好进行 3~4 次,检查定、转子磁场位置读数的不一致是否很小。
- 由于用户选用的变频器厂家和型号区别较大,具体操作和调试应严格按照变频器制造商 提供的操作手册进行,若有问题,请及时与变频器供应商联系。

● 由于出厂时,在制动轮轮缘涂有防锈漆,同时为降低制动器的抱闸声,闸瓦和制动轮轮缘间隙很小,在第一次自学习时,将有摩擦力,并非是在真正的空载状态下,为此,应在第一次自学习后空转3分钟以上再进行第二次自学习,否则,将会使带负荷时电流增加。

6 制动机构的调试

6.1 制动机构的说明

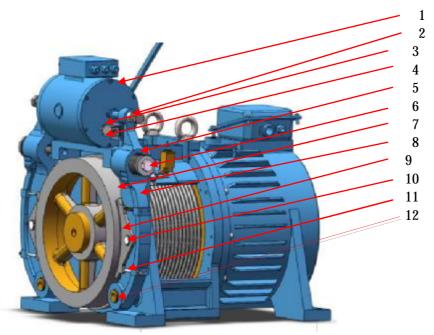


图 6 制动机构的示意图

		ころころころ	
序号	名称	序号	名称
1	电磁铁	8	制动臂
2	抱闸调节螺栓及锁紧螺母	9	闸瓦
3	抱闸开关调整杆	10	闸瓦销轴
4	抱闸微动开关	11	闸瓦调节螺栓及锁紧螺母
5	抱闸弹簧	12	制动臂销轴
6	抱闸弹簧调节螺栓		
7	制动轮		

抱闸: 当电梯轿厢平层、电梯断电或故障检修时,电磁铁处于断电状态,制动臂在抱闸弹簧的作用下带动闸瓦抱紧制动轮,使曳引机制动。

正常松闸: 当电梯运行前需松开抱闸, 电磁铁的电磁线圈通电, 电磁铁的顶杆在电磁力的作用下向外动作, 克服抱闸弹簧的压紧力, 将制动臂向外顶开, 使闸瓦松开制动轮。

手动松闸:在安装、检修状态时,欲使曳引机解除抱闸,可将松闸手柄插入电磁铁后部的松闸孔中,向下压松闸杆,即可克服抱闸弹簧的压紧力将制动臂向外顶开,达到手动松闸的目的,松闸完后请按图 7 将松闸杆复位。

● 抱闸微动开关的作用是判定制动器的工作状态是处在松闸状态还是制动状态。应将该开关的端子接到电动机的控制回路中。由于该开关采用的是安全开关,因此在用户需要时,可将制动器作为上行超速保护构件的一部份。

● 制动机构是由两组独立的动作机构组成,每组动作机构由一个电磁铁线圈及电磁铁顶杆、一个抱闸弹 簧、一个制动臂及闸瓦组件而组成。如果一组动作机构损坏,另一组仍能有效地作用,保证电梯运行的安全。

6.2 制动机构的调试

6.2.1 闸瓦与制动轮间气隙调节

- 出厂时曳引机的制动机构已完成调整,用户可视现场具体情况决定是否另行调整。
- 短接电动机三接线端子,手动松闸,此时空轿厢会非常缓慢地上行,将对重置于缓冲器上,按本文 6.2.3 条进行调节。调好一边后可再进行另一边调节。
- 间隙的大小直接影响到抱闸噪声、振动的大小和抱闸打开的可靠性,应予仔细、及时地调节。当间隙大于 0.2mm 或抱闸噪音显著增加时即应予以调节。

6.2.2 制动力矩的调节

- 曳引机出厂时已将制动器调节至制动力矩约 2×1.25 倍额定转矩。用户一般情况下不需重新调节,当需要时,可作微小调节。在重新更换闸瓦时制动力矩的调节应参照 6.2.3 节。
- 力矩调节过小,固然不能满足制动的需要,但过大将有可能使抱闸不能打开,特别是电压波动,运行温度较高时。同时过大的制动力矩在紧急制动时产生的过大减速度也不满足 GB7588 要求。
- 用户可根据需要,根据轿厢、对重的质量和制动时的减速度要求作适当调整。
- 在出厂时,制造厂整定的制动力矩和允许最大制动力矩(此时闸瓦和制动轮轮缘的最大间隙为 0.25mm) 如表 5。

6.2.3 闸瓦的调整

步骤 1: 拧入抱闸弹簧调节螺栓,但不使抱闸弹簧压缩,在弹簧即将压缩的临界点。

步骤 2: 根据不同载重,按下表中的 B 值,或按出厂时所做标识继续拧入抱闸弹簧调节螺栓。

步骤 4: 将闸瓦调节螺栓拧紧,使闸瓦能紧密贴合于制动轮

步骤 5: 拧入抱闸调节螺栓使之压紧电磁铁的顶杆, 拧入位置最佳处为: 曳引机在不大于检修速度运行状态下, 电磁铁顶杆顶开制动臂时, 闸瓦衬制动轮间的间隙均匀且尽量小(0.05至0.10mm为宜), 而且闸瓦衬与制动轮间无摩擦或仅有有极微小的摩擦

步骤 6: 旋紧抱闸定位螺母,

步骤 7: 调整抱闸开关调节螺钉, 使电磁铁通电时, 此调节螺钉能触发抱闸开关的有效动作

步骤 8: 旋紧抱闸开关调节螺钉的定位螺母

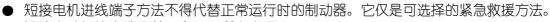
	_
_	5
スマ	.,

曳引机载重量 (kg)	1350	800	1600	2000	1000	2500	1250
曳引比	2: 1	1: 1	2: 1	2: 1	1: 1	2: 1	1: 1
出厂单边抱闸弹簧压缩量 B (mm)	5.5	6.5	6.5	8	8	10	10

- 闸瓦与制动轮轮缘的间隙和制动力矩调整完成后应拧紧锁紧螺母。
- 如果制动器不能完全打开,运行时不仅可使闸瓦的摩擦片过热降低制动力矩,甚或碳化 剥离,而且也可能使电机处在过负荷状态,使电机产生额外发热而保护电路动作,导致 不能正常运行,其至造成损坏。
- 闸瓦上的摩擦片和制动轮轮缘不得粘有些许油或油脂,特别在加油脂后,应用干净汽油擦试干净,并在汽油完全挥发后才能重新开机。
- 注意轿厢运行是否已接近极限位置,若已接近,应停止调节工作。将轿厢往反方向运行, 再继续整行调节。

7 手动紧急救援的操作

7.1 手动盘车的操作



● 为满足手动紧急救援要求,曳引机配有手动盘车装置,具体使用方法见附录 紧急疏散乘客说明---WTYF250 主机

7.2 短接端子进行救援的操作

- 短接电机三接线端子,手动松闸,曳引机主机处于发电状态,电梯系统内部势能将驱动 电机转子缓慢转动,产生的电磁阻力矩可以保证轿厢缓慢升降达到紧急救援的目的。
- 利用势能实现紧急救援,只有在电机停转或低于额定转速 5%时才可短接电机三进线端子。短接必须通过接触器实现,并且短接时应保证三进线端子已与变频器输出端处在断路状态。

● 短接电动机接线端子前,应切断所有电源。

8 产品的维护和保养

8.1 产品的日常检查与维护

● 产品投入运行后,应进行日常检查,进行一定的维护和保养,以维持曳引机的正常工作状态,日常检查内容及相关维护方法见表 6。

检查部位	检查周期	检查内容	维护方法			
外表面	6个月	是否清洁 ?	清除表面尘埃 (切忌用水冲洗)。			
外露紧固件	6个月	是否松动?	拧紧松动的紧固件。			
电气连接	6个月	端子是否松动 ? 电缆是否破损 ?	拧紧松动的端子,更换破损的电缆。			
轴承噪音	6个月	耳听运行时轴承声间是否和谐、无杂音 ?	轴承补充润滑间隔大约在运行 5000h 左右,补充 SKF 润滑脂 LGEP2 (49-54克),严重时更换轴承。			
编码器	6个月	轴和外壳的固定是否松动 ?	重新拧紧。			
曳引轮	6个月	是否磨损严重?	曳引力不足时更换曳引轮。			
制动器	不定期	抱闸力矩是否不够 ? 制动轮轮缘是否有黑色碳化物 ? 闸瓦片厚度是否小于 3mm ?	见公司网站视频			
制动臂轴销 及闸瓦销	6个月		加注锂基润滑油			
缓冲垫	80 万次或 1 年	是否破损?	更换缓冲垫			

表 6 日常检查内容及相关维护方法

8.2 制动器的检查与维护

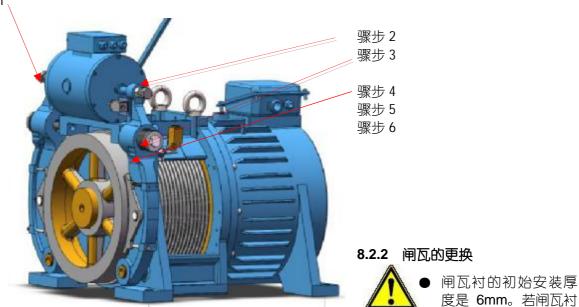
8.2.1 闸瓦片和和制动轮轮缘表面的碳化物的清理

- 无齿曳引机经过长时间运行后,有可能因闸瓦衬与曳引轮抱闸轮缘的长期磨擦,闸瓦衬表面发生碳化,造成闸瓦衬与曳引轮抱闸轮缘的表面有黑色碳化物的存留现象,从而可能影响曳引机的制动力矩降低。如果有以上现象,应及时对闸瓦衬与曳引轮抱闸轮缘进行清理维护。
- 对碳化件进行清理前,必须将电梯停止运行以免发生意外

骤步 1: 将一侧的抱闸弹簧调节螺栓继续拧紧 1 至 1.5 圈,增加曳引机在单臂制动状态下的可靠性

步骤 2: 将对侧的抱闸弹簧周节螺栓完全松脱

步骤 3: 将制动臂旋转平置


步骤 4: 使用砂纸将闸瓦和制动轮表面的黑色碳化留清理趋干净

步骤 5: 将制动臂恢复清理前的安装状态,并按本文 6.2.3 条闸瓦的调整步骤 1,2,3 条进行闸瓦的更换),

可适当增加抱闸弹簧的压缩量以保证可靠制动

步骤 6: 重复以上步骤对另一侧的闸瓦和制动轮的表面进行清理

因故损坏或其厚度小于 3mm, 在正常运行时闸瓦不能抱紧制动轮时, 必须更换闸瓦以保证电梯的安全运行。

● 在更换闸瓦前,必须停止曳引机的运行。

8.2.2.1 旧闸瓦的拆除

步骤 1: 完全松脱抱闸弹簧调节螺栓 ;

步骤 2: 放平制动臂;

步骤 3: 拆除闸瓦上的挡圈,取出闸瓦销,

拆下闸瓦

8.2.2.2 新闸瓦的安装

按 8.2.2.1 的示意将新闸瓦安装好后,按本文 6.2.3 条调整抱闸调节螺栓及抱闸弹簧

8.2.2.3 制动机构常见故障及排除方法

表 7 制动机构常见故障及排除方法

故障现象	故障原因	故障排除
制动力矩不足	1 弹簧压力不足 2 制动轮轮缘有油脂或污物 3 闸瓦磨损过度	1 检查制动弹簧压缩尺寸 2 予以清理 3 更换闸瓦
制动器不能释放或释放后不能保持	 制动器电磁线圈无电 气隙过大或过小 过励电压太低 保持电压太低 电磁铁柱塞卡住 发热太严重 弹簧压力过大 	1 检查接线和可控整流电路直流输出端,若无直流输出,更换电路板。 2 检查和调节气隙 3 检查过励电压是否<80%额定电压 4 检查保持电压是否<50%额定电压 5 排除卡住的原因 6 检查电压是否太高(开闸电压时间是否过长,保持电压是否>60%额定电压) 7 按要求设定制动弹簧压力
制动器释放迟后	1 气隙过大 2 续流回路损坏	1 检查和调节气隙 2 检查续流回路有无损坏
制动器不能制动或制动迟后	1 开关断开后,线圈残留电压太高。 2 电磁铁柱塞动作迟缓 3 弹簧压力不足 4 摩擦片过度磨损	1 检查线圈残留电压,续流回路有无损坏2 拆解制动器检查迟缓的原因3 检查制动弹簧压缩尺寸4 更换制动闸瓦
制动器制动和释放时 噪音过大	1 气隙过大 2 缓冲垫损坏	1 检查和调整气隙 2 更换缓冲垫

8.2.3 制动器的维护

当制动器每工作 80 万次或 1 年后,应及时更换制动器内部两端的减震垫。并检查内部零件及密封状况是否完好,如有密封圈损坏应及时更换。如曳引机超过 6 个月不使用且存放在潮湿的环境,则在使用前也应检查制动器内部是否生锈,若生锈应更换相关零件。

详细制动器维护保养说明请参考本公司网站公布的最新版《DZS系列制动器维护保养手册》

8.3 轴承维护

编码器端轴承免维护。推荐润滑脂 LGEP 或性能相同的其他润滑脂,注油时适量换注,否则注油量过大会造成轴承密封盖变形甚至脱落,从而引起漏油,严重时油会溅到制动轮上造成曳引机制动失效产生安全事故。

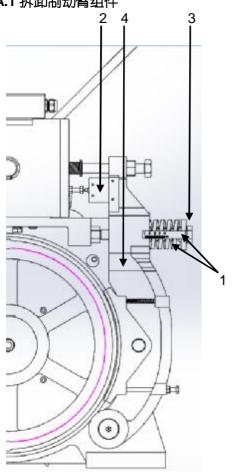
9 易损件清单

表 8 易损件清单

序号	零部件名称	说明					
1	曳引轮	曳引轮槽磨损严重需更换。					
2	编码器端轴承	2217 (密封)					
3	曳引轮端轴承	23122 (密封)					
4	编码器	Heidenhain 公司的 ERN1387-2048 或客户指定的其它型号编码器					
5	可控整流器 CKZB (可选)	输入 220VAC					
6	闸瓦衬	非石棉型高摩擦系数材料					
7	抱闸微动开关	Schmersal 公司的 TS236-11Z-M16					
8	盘车微动开关	Schmersal 公司的 TS236-11Z-M16					
9	制动器缓冲垫	降低噪声					

10 质量保证

● 在制造厂发运之日起,二年内或运行一年半内由于制造厂设计或制造所引起的质量问题,制造厂负责实行免费修理,在超过二年后或虽在保修期内而非制造厂的原因造成的损坏,制造厂收取适当费用,为用户实行终身维修。

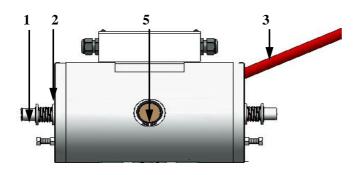

11 说明

本手册若有改版或产品有所更改恕不另行通知,请随时与厂家联系!

附录 A 制动器维保操作指导 DZS(I)

- 制动器维保前,须将空载轿厢置于井道顶部;对重置于井道底部固定,不得移动。以上操作完毕后须切断电源。
- I 只有经过正确培训和指导的维保人员才能进行该操作。

A.1 拆卸制动臂组件


步骤 1: 测量弹簧尺寸或在标尺上作

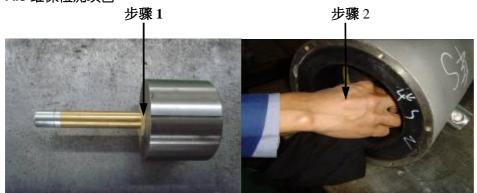
好标识。

步骤 2: 在制动臂上卸除开关连接板。步骤 3: 完全松脱制动弹簧调节螺栓。

步骤 4: 卸除关联件, 旋转平置制动臂组件。

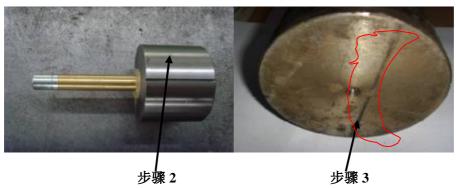
A.2 拆卸制动器配件

步骤 1: 使用卡钳取下挡圈、垫圈及弹簧。


步骤 2: 卸除端盖上螺钉。

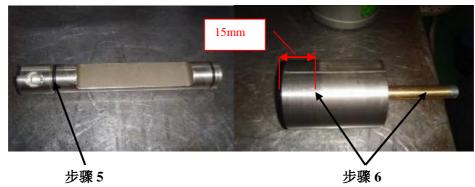
步骤 3: 压下手柄将端盖顶出取下。

步骤 4: 取出柱塞组件。

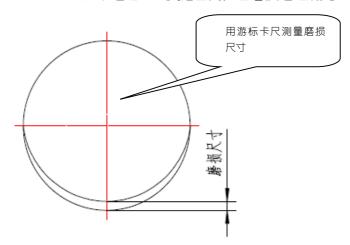

步骤 5: 使用卡钳取下挡圈, 取下松闸杆。

A.3 维保检测项目

步骤 1: 检查缓冲垫是否完整, 若损坏或厚度小于 2.9mm 时须进行更换。

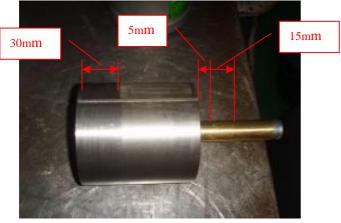

步骤 2: 检查表面油污, 需擦拭干净; 同时需清理制动器内部。

步骤 3: 检查顶部与松闸杆划痕情况, (如图示部位) 手摸划痕若高出平面,请修磨平整,如磨痕严重则更换。



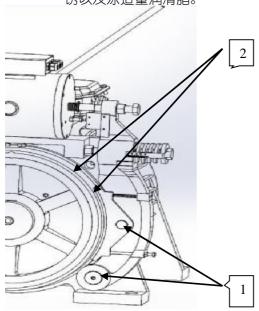
步骤 4: 检查柱塞顶杆松动情况,若松动,则螺纹及螺孔上涂上 Permatex 680 胶 (见照片,推荐用),或用其它品牌的高强度性能螺纹胶; 胶水用量以最终溢出为准 (见上图框内); 最后擦去溢出胶水。

步骤 5: 检查松闸杆两密封圈磨损情况, 若磨损请更换。


步骤 6: 检查柱塞头部 (图示) 磨损划痕情况, 柱塞磨损最大处深度定在 0.6mm以内, 且磨损面积不超过 180 度范围内, 若磨损超过规定 0.6mm请更换;

如果柱塞磨损在 0.6mm 内,表面不光滑时,可以用 砂皮(粒度:100)粗磨,然 后再用金相砂纸修光

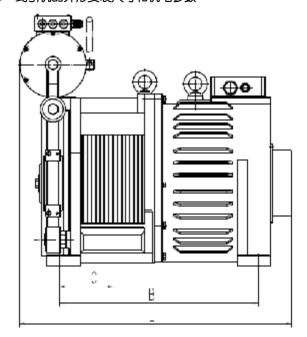
步骤 7: 以上内容完毕后,柱塞头部圆周 (图示),顶杆 (图示) 需均匀涂少许润滑脂,可用二硫化钼,注意薄薄一层 (约 0.05mm厚) 即可。

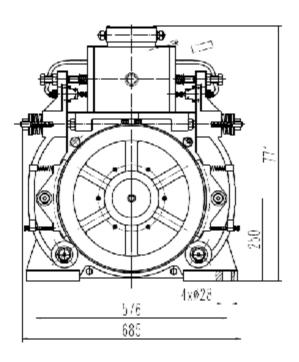


A.4 制动器维护完毕后,请按拆卸次序装配。

A.5 检查制动臂机构

步骤 1: 检查两销轴灵活程度,请注意添加润滑脂。步骤 2: 使用砂纸清理闸瓦衬及制动面表面碳化物。


注意事项:两销轴无注油孔的老机型,注意检查其灵活程度,若存在灵活程度不够,需拆下除锈以及涂适量润滑脂。



A.6 曳引机运行和后续保养总括。

- 以上工作确认无误后,将电梯恢复正常状态,在空载条件下,须进行单臂(左、右)、双臂各两次空载试验(空载试验时轿厢应从底层向上运行)。若试验过程中,发现曳引机制动力矩不够时,须按维护说明书内容要求进一步调整曳引机抱闸弹簧尺寸。
- ▲ 维保时间为电梯运行80万次或1年。
- 周期检查时间为 1~2 个月, 检查项目内容如下:
- 1) 手动松闸杆的灵活程度; 2) 柱塞的灵活程度应无卡阻现象;
- 3) 柱塞头部顶杆有无松动; 4) 各表面的生锈情况; 5) 各涂红漆处有无松动;

附 1 曳引机的外形安装尺寸和机电参数

Til 🗆 +0.44	载重	梯速	功率	电压	电流	频率	转速	转矩	绳		-		自重
型 号 规格	(kg)	m/s	(kW)	(V)	(A)	(Hz)	r/min	N·m	数	L	В	С	kg
WTYF250 F-10-1350-2		1	9.5	335	21.6	18.8	94					160.5	624
WTYF250 F-16-1350-2		1.6	14.9	335	33.7	30.1	150.5						
WTYF250 F-17.5-1350-2	1050	1.75	16.5	335	37	32.9	165	950 7	7				
WTYF250 F-20-1350-2	1350	2	18.9	335	42.6	37.6	188		'	808	602		
WTYF250 F-25-1350-2		2.5	23.4	335	52.5	47	235						
WTYF250 F-30-1350-2		3	28.4	335	63.6	56.4	282						
WTYF250 F-10-1600-2		1	11.2	335	24.5	18.8	94	1126	1126				
WTYF250 F-16-1600-2		1.6	17.7	335	41	30.1	150.5	1127					
WTYF250 F-7.5-1600-2	1000	1.75	19.5	335	45	32.9	165	1128	_	000	600	400.5	000
WTYF250 F-20-1600-2	1600	2	22.4	335	51.5	37.6	188	1126	7	808	602	160.5	638
WTYF250 F-25-1600-2		2.5	27.8	335	64.2	47	235	1130					
WTYF250 F-30-1600-2		3	33.1	335	76.9	56.4	282	1130					
WTYF250 F-10-2000-2	- 2000	1	14	335	31.9	18.8	94	1410 9		9 1000	789	211.5	730
WTYF250 F-16-2000-2		1.6	22.1	335	48	30.1	150.5						
WTYF250 F-17.5-2000-2		1.75	24.4	335	53.4	32.9	165		9				
WTYF250 F-20-2000-2		2	28	335	60.5	37.6	188						
WTYF250 F-10-2500-2	0500	1	17.5	335	39.5	18.8	94	1760 11		1000	789	211.5	
WTYF250 F-16-2500-2		1.6	27.6	335	60	30.1	150.5		11				775
WTYF250 F-17.5-2500-2	2500	1.75	30.4	335	66.7	32.9	165		1000	769	211.5	775	
WTYF250 F-20-2500-2		2	35	335	76.2	37.6	188						
WTYF250 F-10-800-1		1	5.5	335	14.2	9.4	47			000	000	400.5	620
WTYF250 F-16-800-1	000	1.6	8.8	335	21.8	15.1	75	1106	7				
WTYF250 F-17.5-800-1	800	1.75	9.8	335	23.9	16.5	82	1126 7	808	602	160.5	638	
WTYF25 F-20-800-1		2	11.2	335	26.7	18.8	94						
WTYF250 F-10-1000-1		1	6.9	335	18	9.4	47						
WTYF250 F-16-1000-1		1.6	11.1	335	25.4	15.1	75				789	211.5	730
WTYF250 F-17.5-1000-1	1000	1.75	12.3	335	27.6	16.5	82	1410		4000			
WTYF250 F-20-1000-1	1000	2	14	335	33.2	18.8	94	1410	9	1000			
WTYF250 F-25-1000-1		2.5	17.4	335	40.1	23.5	118						
WTYF250 F-30-1000-1		3	20.8	335	47.8	28.2	141						
WTYF250 F-10-12500-1		1	8.7	335	22.5	9.4	47						
WTYF250 F-16-1250-1		1.6	13.8	335	34	15.1	75					211.5	776
WTYF250 F-17.5-1250-1		1.75	15.3	335	37.1	16.5	82	1700	14	1000	700		
WTYF250 F-20-1250-1	1250	2	17.5	335	41.5	18.8	94	1760	11	1 1000	789		775
WTYF250 F-25-1250-1		2.5	21.7	335	50.1	23.5	118						
WTYF250 F-30-1250-1		3	26.0	335	58.8	28.2	141						

WTYF250 系列 永磁同步无齿曳引机

- 地址: 浙江省宁波市东吴镇 Add:DongWu Town,NingBo.China
- 邮编 P.C:315113
- 电话 TEL: +86-0574-88489608 +86-0574-88489008 ● 传真 FAX: +86-0574-88489356 +86-0574-88489056
- 主页:http://www.nbxd.com
- E-mail: <u>Home_market@xinda-group.com</u>
 <u>Nbxinda@mail.nbptt.zj.cn</u>